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Figure 1. Photonic crystal 
nanocavity laser structure 
fabricated in InGaAsP 
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When combined with high index contrast slabs in which light can 
be efficiently guided, microfabricated two-dimensional photonic 
bandgap mirrors provide us with the geometries needed to confine 
and concentrate light into extremely small volumes and to obtain 
very high field intensities. Fabrication of optical structures has now 
evolved to a precision which allows us to control light within such 
etched nanostructures. Sub-wavelength nano-optic cavities can be 
used for efficient and flexible control over both emission 
wavelength and frequency, and nanofabricated optical waveguides 
can be used for efficient coupling of light between devices. The 
reduction of the size of optical components leads to their 
integration in large numbers and the possibility to combine 
different functionalities on a single chip, much in the same way as 
electronic components have been integrated for improved 

functionality in microchips. The past rapid emergence of optical microcavity devices, such as 
Vertical Cavity Surface Emitting Lasers (VCSELs) can be largely attributed to the high precision 
over the layer thickness control available during semiconductor crystal growth. High reflectivity 
mirrors can thus be grown with sub-nanometer accuracy to define high-Q cavities in the vertical 
dimension. Recently, it has also become possible to microfabricate high reflectivity mirrors by 
creating two- and three-dimensional periodic structures. These periodic “photonic crystals” can be 
designed to open up frequency bands within which the propagation of electromagnetic waves is 
forbidden irrespective of the propagation direction in space and define photonic bandgaps. When 
combined with high index contrast slabs in which light can be efficiently guided, microfabricated 
two-dimensional photonic bandgap mirrors provide us 
with the geometries needed to confine and concentrate 
light into extremely small volumes and to obtain very 
high field intensities. Here we show uses of crystals in 
functional nonlinear optical devices, such as lasers, 
modulators, add/drop filters, polarizers and detectors. 
 
Fabrication of optical structures has evolved to a 
precision which allows us to control light within 
etched nanostructures. For example, sub-wavelength 
nano-optic cavities can be used for efficient and 
flexible control over both emission wavelength and 
frequency.  Similarly, nanofabricated optical 
waveguides can be used for efficient coupling of light between devices. As high-Q optical and 
electronic cavity sizes approach a cubic half-wavelength the spatial and spectral densities (both 
electronic and optical) increase to a point where the light-matter coupling becomes so strong that 
spontaneous emission is replaced by the coherent exchange of energy between the two systems.  
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Figure 3. Scanning Electron Micrograph of a 
surface plasmon enhanced LED showing the 
metal grating pattern which is used to couple 
out the radiation.  

 

Surface Plasmon Enhanced Light Emitting Diodes  
 

We have recently demonstrated a method for 
enhancing the emission efficiency of light-emitting 
diodes, by using coupled surface plasmons. The 
analyzed structure consists of a 90nm thick 
semiconductor layer sandwiched between two silver 
films. A single 8nm thick InGaAs quantum well is 
positioned in the middle of the semiconductor 
membrane. If a periodic pattern is defined in the top 
semitransparent metal layer by lithography (Figure 3), it 
is possible to efficiently couple out the light emitted 
from the semiconductor and to simultaneously enhance 
the spontaneous emission rate. For the analyzed designs, 
we theoretically estimate extraction efficiencies as high 
as 37% and Purcell factors (Fp) of up to 4.5. We have 
experimentally measured photoluminescence intensities 
of up to 46 times higher in fabricated structures compared to unprocessed wafers. The increased 
light emission is due to an increase in the efficiency of the diode and an increase in the pumping 
intensity resulting from trapping of pump photons within the microcavity. The measured 

photoluminescence spectra are shown in 
Figure 4. The spectra correspond to: (a) the 
unprocessed wafer; (b) the half-processed 
wafer (i.e. 90nm thick semiconductor 
membrane on top of a thick, 
nontransparent silver layer); (c) the 
unpatterned metal-clad microcavity (i.e. a 
semiconductor membrane sandwiched 
between two metal films, without 
patterning of the top silver layer) and (d) 
the fully processed structure where silver 
stripes are defined in the top silver layer, 
with the grating periodicity of 250nm and 
the 160nm gap between silver stripes.  
 

Figure 4. Photoluminescence measurements taken 
from surface plasmon light emitting diode at various 
points of the fabrication process 


